SYNTHESIS OF A NEW TYPE OF QUADRUPLY ORTHO-BRIDGED BIPHENYL COMPOUNDS WITH DISULFIDE LINKAGE, AND ITS SULFUR EXTRUSION IN CONCENTRATED H₂SO₄ AND PHOTOCHEMICAL CONDITION

Hisashi Fujihara, Jer-Jye Chiu, and Naomichi Furukawa*

Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305, Japan

Abstract: A new methanodithiomethano-bridged dibenzotrithionin (1) has been synthesized. The electrochemical oxidation of 1 and its analogous compound was studied by cyclic voltammetry. A new type of the sulfur extrusion of 1 was found in the reaction of 1 with concd H_2SO_4 or 2 equiv of NOPF₆ and in its photochemical reaction.

Investigations of transannular interactions and reactions have provided numerous informations on the structures and reactivities of medium-sized cyclic compounds containing sulfur atoms.¹⁻³ Recently, we reported the transannular bond formation between the three sulfur atoms, i.e., dicationic salt of 1,11-(methanothiomethano)-5H,7H-dibenzo[b,g][1,5]dithiocin (6).2 Furthermore, we found a new type of transannular $p\pi$ -(S⁺-S⁺) interaction in the reaction of 1,11-(etheno)-5H,7H-dibenzo[b,g][1,5]dithiocin (8) with concd H_2SO_4 or 2 equiv of $NOPF_6$.³ These analogous compounds exhibit interesting physical and chemical properties on account of their unique arrangement of We now report the synthesis and aromatic rings and heteroatoms in space. characterization of a new methanodithiomethano-bridged dibenzotrithionin and its unusual sulfur extrusion via the transannular S-S bond (1).formation, and the photochemical reaction of 1 and related compounds with (MeO)₃P.

The title compound 1 was synthesized as follows (Scheme 1). Bis[2,6bis(mercaptomethy1)pheny1]sulfide (4) was obtained by treating bis[2,6bis(bromomethy1)pheny1]sulfide (3)² with thiourea, NaOH and HCl, and was purified by silica-gel column chromatography using n-hexane as eluant. A colorless crystal 4 was obtained in 74% yield.⁴ Solutions of the tetrathiol 4 (950 mg, 2.56 mmo1) in chloroform (100 mL) and iodine (1.56 g, 6.14 mmo1) in chloroform (100 mL) were added separately and simultaneously over 1 h to a vigorously stirred solution of triethylamine (620 mg, 6.14 mmo1) in chloroform (100 mL). After usual work-up, the crude product was purified on silica-gel column chromatography (eluant: n-hexane/CHCl_3) to give the compound 1 as colorless crystals, in 76% yield. 5

Scheme 1. i, (NH₂)₂CS; ii, NaOH; iii, HCl; iv, I₂.

The compound 2 was prepared by the same method as $1.^6$

The mass spectrum (EI) of 1 showed the molecular ion (M^+) at m/z 366. Other abundant fragments (m/z 334, 302, 270, 238, and 206) can be rationally explained in terms of loss of sulfur atoms from the molecular ion.

Interestingly, the 500-MHz ¹H NMR spectrum of 1 in CDCl₃ at 25 °C showed that the signals assigned to the methylene hydrogens appeared as two sets of distinct AB quartet at δ 3.46 and 4.33 (ABq, J=15 Hz, 4H), 3.64 and 5.68 (ABq, J=15 Hz, 4H), indicating the rigid conformation in nine-membered ring

with disulfide linkage. In contrast, the absorption of methylene protons of 2 in CDCl_3 at 25°C in its ¹H NMR appeared at δ 4.42 as broad singlet which can be assigned to the flexible conformers. In the UV spectra of compounds 1 and 2, the compound 2 has a peak at λ max 240 nm (ε =9.90 X 10³), while the bis-disulfide 1 has one of λ may 243 nm (ε =1.68 X 10⁴) and another at 222 nm (ε =2

at λmax 243 nm (ε =1.68 X 10⁴) and another at 332 nm (ε =3.31 X 10³).

The electrochemical oxidations of bis-disulfide 1 and 2 were studied by cyclic voltammetry. Peak potentials of the first oxidation peak were determined at a glassy carbon working electrode (100 mV/s scan rate) in dichloromethane - 0.1M n-Bu₄NClO₄ vs Ag/0.01M AgNO₃ as reference electrode. The peak potentials (Ep) for 1 and 2 showed the following values: 1, 1.16 V and 2, 1.53 V. These oxidations were irreversible. Comparison of 1 with 2 shows a peak potential 370 mV more cathodic for the former, indicating that 1 is oxidized more readily. This facile oxidation of 1 can be explained by the intramolecular sulfur-sulfur interaction.⁷

The disulfide 2 did not change in concd H_2SO_4 as evidenced by ¹H NMR, and actually 2 was recovered. Surprisingly, when bis-disulfide 1 was dissolved in concd H_2SO_4 , the monosulfoxide 5 was obtained in 48% yield after the hydrolysis of the H_2SO_4 solution of 1 (Scheme 2). Furthermore, the reaction of 1 with 2 equiv of NOPF₆, a one-electron-oxidizing agent, in CH_3CN gave the solid, which on treatment with H_2O again resulted in the formation of the sulfoxide 5 (47%). Although we have no rational explanation for this reaction mechanism, one plausible mechanism can be proposed as follows. The reaction of 1 with concd H_2SO_4 or NOPF₆ (2 equiv) may proceed via the intermediary formation of the dication such as 7 with the extrusion of the two sulfur atoms by an electron-transfer reaction, since the sulfoxide 5 was also obtained by the hydrolysis of the stable dication 7 which was formed in the reaction of tris-sulfide 6 with concd H_2SO_4 or NOPF₆ (2 equiv).² These results indicate that the electrochemical study of 1 and 2 is consistent with the chemical data obtained by the reaction of 1 and 2 with concd H_2SO_4 .

The photochemical reaction of the cyclic compounds containing polysulfur atoms, (1, 2, 6, 8, and 10) in the presence of trimethyl phosphite was studied (Scheme 3). Irradiation of bis-disulfide 1 in trimethyl phosphite at 15 °C using 400W high-pressure mercury lamp for 25 h gave the tris-sulfide 6 (82%) as a sole product by extrusion of the sulfur atoms. When the trissulfide 6 was further irradiated in trimethyl phosphite, 6 was recovered quantitatively.⁸ Thus, the tris-sulfide 6 is inert toward photochemical

Scheme 3

reaction with $(MeO)_3P$, suggesting that the eight-membered ring of **6** is remarkably stabilized. On the other hand, the photolytic sulfur extrusion of etheno-bridged dibenzodithiocin $\mathbf{8}^3$ in $(MeO)_3P$ afforded the dihydropyrene (**9**) in 91% yield. In contrast, the photochemical reaction of the compounds (**2** and **10**) with $(MeO)_3P$ gave the complex mixtures which could not be characterized. Thus, we observed the distinct difference of the reactivity in photochemical reaction of these polysulfur compounds with $(MeO)_3P$.

The results described herein indicate the intriguing reactivity and property of a new type of quadruply ortho-bridged biphenyl compounds with polysulfur atoms.

References and Notes

- (a) K. Ohkata, K. Okada, and K. Akiba, <u>Tetrahedron Lett.</u>, 26, 4491 (1985).
 (b) K. Ohkata, K. Okada, K. Maruyama, and K. Akiba, <u>Tetrahedron Lett.</u>, 27, 3257 (1986).
 (c) K. Akiba, K. Takee, Y. Shimizu, and K. Ohkata, <u>J. Am. Chem. Soc.</u>, 108, 6320 (1986).
- H. Fujihara, J.-J. Chiu, and N. Furukawa, <u>J. Am. Chem. Soc.</u>, 110, 1280 (1988).
- H. Fujihara, J.-J. Chiu, and N. Furukawa, <u>Tetrahedron Lett.</u>, 30, 2805 (1989).
- 4) 4: Mp 144-145 °C; FT-IR (KBr) 2567 cm⁻¹; ¹H NMR (CDCl₃) δ 1.66 (t, 4H), 3.83 (d, 8H), and 7.29 (br s, 6H). Anal. Calcd for C₁₆H₁₈S₅: C, 51.85; H, 4.90%. Found: C, 51.41; H, 4.81%.
- 5) 1: Mp 265-266 °C; ¹H NMR (500-MHz, CDCl₃) δ 3.46 and 4.33 (ABq, J=15 Hz, 4H), 3.64 and 5.68 (ABq, J=15 Hz, 4H), 7.00 (d, 2H), 7.21 (t, 2H), and 7.26 (d, 2H); ¹³C NMR (125-MHz, CDCl₃) δ 40.8, 45.1, 129.2, 129.5, 130.7, 131.6, 138.8, and 144.5; MS (m/z) 366 (M⁺). Anal. Calcd for C₁₆H₁₄S₅: C, 52.42; H, 3.85%. Found: C, 52.26; H, 3.87%.
- 6) 2: Mp 119-120 °C; ¹H NMR (CDCl₃) δ 4.42 (br s, 4H), 7.07-7.33 (m, 6H), and 7.53-7.82 (m, 2H). Anal. Calcd for C₁₄H₁₂S₃: C, 60.83; H, 4.38%. Found: C, 60.51; H, 4.35%.
- 7) For review: R. S. Glass, M. Hojjatie, A. Petsom, G. S. Wilson, M. Göbl, S. Mahling, and K.-D. Asmus, <u>Phosphorus</u> and <u>Sulfur</u>, 23, 143 (1985).
- Bithia[3.3]metacyclophane was easily converted to [2.2]metacyclophane upon irradiation with (MeO)₃P as shown below: V. Boekelheide, I. D. Reingold, and M. Tuttle, J. <u>Chem. Soc. Chem. Commun.</u>, 406 (1973).

(Received in Japan 26 August 1989)

7444